
Why Types
Matter

IN ALMOST 5 REASONS

Sebastiaan Visser - 2013

http://silkapp.com

http://silkapp.com/

One product

Started in 2009

Grown from 4 to 10 people

Located in Amsterdam

Why am I here?

We love functional programming!

Server: Haskell

Client: JavaScript

http://haskell.org

http://haskell.org/

By default

Higher order

Lazy evaluation

Pure (no side e¥ects)

Statically typed

Well suited for

Strict

Impure

Dynamically typed

Imperative

Hacking

5 REASONS

1.
CORRECTNESS

2.
REFACTORING

Types simplify refactoring

Particularly interesting:

Refactor into something
more type safe.

Employment

(Year, Year)

myProgram =
 do (f, t) <- getEmployment "sebas"
 printEmployment (t - f)

$./myProgram
Employment duration: -4 years.

Change representation?

(Year, Integer)

Change representation?

(Year, Unsigned)

Need to check every use site manually.

Create a new type

data Employment = MkEm Year Year

normalize f t = MkEm (min f t) (max f t)

make :: Year -> Year -> Maybe Employment
make f t = if f < 2009
 then Nothing
 else Just (normalize f t)

module Employment
 (Employment, make, from, to)

from, to :: Employment -> Year

from (MkEm f _) = f
to (MkEm _ t) = t

Opaque datatype

Only export smart constructor make,

Not the original constructor MkEm.

Type error:
Couldn't match expected type (Year, Year)
with actual type Employment

myProgram =
 do (f, t) <- getEmployment "sebas"
 printEmployment (t - f)

myProgram =
 do e <- getEmployment "sebas"
 printEmployment (to e - from e)

$./myProgram
Employment duration: 4 years.

We win

Fixed a bug,

that will never occur again.

Made only a local change,

compiler points out use sites.

3.
REASONING

What does this function do?

foo :: [Bool] -> [Bool]

foo :: [Bool] -> [Bool]

The function can produce every
single bit sequence.

foo :: [a] -> [a]

foo :: [a] -> [a]

The function must reuse input.

reverse, empty, cycle, powerset, etc.

foo :: ()

Technically, not a function.

foo :: ()
foo = ()

Singleton type 'unit',
only one value ().

foo :: a -> a

foo :: a -> a
foo a = a

Only one possible implementation.

id

foo :: (a -> b) -> a -> b

foo :: (a -> b) -> a -> b
foo f a = f a

Function application, ($)

(specialization of id)

foo :: (b -> c)
 -> (a -> b)
 -> a -> c

foo :: (b -> c)
 -> (a -> b)
 -> a -> c
foo f g a = f (g a)

Function composition, (.)

foo :: (a, b) -> (b, a)

foo :: (a, b) -> (b, a)
foo (a, b) = (b, a)

Only one possible implementation.

swap

reverse :: [a] -> [b]

reverse :: [a] -> [b]

This is a lie!

Can only produce the empty list.

foo :: a

Maybe this?

foo :: a
foo = foo

Maybe this?

undefined :: a

Also called bottom, or ⊥

foo :: a -> b

foo :: a -> b

Dangerous coercion!

Provided by the compiler as unsafeCoerce.

Theorems for free

Curry-Howard isomorphism:

Types Ô Propositions

Implemention Ô Proofs

4.
Genericity

Equality

equalInt :: Int -> Int -> Bool

Equality

equalInt :: Int -> Int -> Bool

equalStr :: String -> String -> Bool

equalBool :: Bool -> Bool -> Bool

equalX :: X -> X -> Bool

Generic Equality

(==) :: a -> a -> Bool

Nope

(==) :: a -> a -> Bool

Free theorems say cannot be done!

Do all types have equality anyway?

Constraint

(==) :: Eq a => a -> a -> Bool

Type classes

class Eq a where
 (==) :: a -> a -> Bool

Type classes

instance Eq Bool where
 True == True = True
 False == False = True
 _ == _ = False

Composability

notEq :: Eq a => a -> a -> Bool
notEq a b = not (a == b)

Composability

lsEq :: Eq a => [a] -> [a] -> Bool
lsEq [] [] = True
lsEq (x:xs) (y:ys) = x == y && lsEq xs ys
lsEq _ _ = False

Super classes

instance Eq a => Eq [a] where
 (==) = lsEq

ghci> [[], [True, False]] == [[True]]

False

Type classes

Eq, Ord, Show, Read,
Random, Bounded, Enum,
IsString, Functor,

Num, Floating, Fractional,
Json, Xml, Binary, ...

Lots more

Deriving

data User = User
 { name :: String
 , contact :: Either Twitter Email
 , age :: Int
 }
 deriving (Eq, Ord, Show)

Either, Sum or +

data Eihter a b = Left a | Right b

Tuple, Product or *

data Tuple a b = Tuple a b

Tuple, Product or *

data (,) a b = (,) a b

data (a, b) = (a, b)

Deriving Generics

data User = User
 { name :: String
 , contact :: Either Twitter Email
 , age :: Int
 }
 deriving (Eq, Ord, Show, Generics)

Deriving Generics

Represents datatype algebraicly,
using sums and products.

Now we can derive Json, Xml, Binary, etc.

5.
E¥ects

The Real World

getLine :: String

putStr :: String -> ()

readFile :: FilePath -> String

Put values in context

getLine :: IO String

putStr :: String -> IO ()

readFile :: FilePath -> IO String

Values

:: a

becomes

:: m a

Functions

:: a -> b

becomes

:: a -> m b

E¥ects

IO, ST, Cont,
Identity, Maybe, Either, [],
State, Reader, Writer,
Random, Parser,

Async, Par, STM, ...

Lots more

Running

runState :: State v a -> v -> (a, v)

Running

Most e¥ects can be run

runState :: State v a -> v -> (a, v)

runReader :: Reader v a -> v -> (a)

runWriter :: Writer v a -> (a, v)

What about IO?

runIO :: IO a -> a

unsafePerformIO

runIO :: IO a -> a

E¥ects escape into purity!

main :: IO ()

The RTS interprets your top level IO.

Composability

Parse to
a list of values

or failures
from a socket

in parallel?

ParT . ParserT . ListT . EitherT Err . IO

Idioms

Category, Arrow,
Functor, Applicative,

Alternative,
Monad, MonadPlus,

Foldable, Traversable, ...

class Functor f where
 fmap :: (a -> b) -> f a -> f b

lengths :: Tree String -> Tree Int
lengths = fmap length

class Applicative f where
 pure :: a -> f a
 (<*>) :: f (a -> b) -> f a -> f b

mkUser :: String -> Int -> User

pStr :: Parser String
pInt :: Parser Int

pUser :: Parser User
pUser = pure mkUser <*> pStr <*> pInt

class Foldable f where
 fold :: (a -> a -> a) -> f a -> a

minTree :: Tree Int -> Int
minTree = fold min

class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

getLine :: IO String
print :: String -> IO ()

echo :: IO ()
echo = getLine >>= print

echo :: IO ()
echo = do ln <- getLine
 print ln

class Functor f => Traversable f where
 mapM :: Monad m =>
 (a -> m b) -> f a -> m (f b)

fetch :: [Request] -> ParT IO [Response]
fetch = mapM Http.request

fetch :: [Request] -> ParT IO [Response]
fetch = mapM Http.request

type Matrix a = Vector (Vector a)

transpose :: Matrix a -> Matrix a
transpose = mapM id

x:σ ∈ Γ
Γ ⊢ x:σ

silkapp.com
@silkapp
github.com/silkapp

fvisser.nl
@sfvisser

github.com/sebastiaanvisser

http://silkapp.com/
http://twitter.com/silkapp
http://github.com/silkapp
http://fvisser.nl/
http://twitter.com/sfvisser
http://github.com/sebastiaanvisser

