Why Types Matter

IN ALMOST 5 REASONS

Sebastiaan Visser - 2013

Silk^o

http://silkapp.com

Silk^Q

One product

Started in 2009

Grown from 4 to 10 people

Located in Amsterdam

Why am I here?

We love functional programming!

Server: Haskell

Client: JavaScript

http://haskell.org

Higher order

Lazy evaluation

Pure (no side effects)

Statically typed

Well suited for

Strict

Impure

Dynamically typed

Imperative

Hacking

5 REASONS

CORRECTNESS

REFACTORING

Types simplify refactoring

Particularly interesting:

Refactor into something more type safe.

Employment

(Year, Year)

myProgram =
 do (f, t) <- getEmployment "sebas"
 printEmployment (t - f)</pre>

\$./myProgram Employment duration: -4 years.

Change representation?

(Year, Integer)

Need to check every use site manually.

Create a new type

data Employment = MkEm Year Year

normalize f t = MkEm (min f t) (max f t)

make :: Year -> Year -> Maybe Employment
make f t = if f < 2009
 then Nothing
 else Just (normalize f t)</pre>

module Employment
 (Employment, make, from, to)

from, to :: Employment -> Year

from (MkEm f _) = f
to (MkEm _ t) = t

Opaque datatype

Only export smart constructor make,

Not the original constructor MkEm.

Type error: Couldn't match expected type (Year, Year) with actual type Employment

myProgram = do (f, t) <- getEmployment "sebas" printEmployment (t - f)</pre>

myProgram = do e <- getEmployment "sebas" printEmployment (to e - from e)</pre>

\$./myProgram Employment duration: 4 years.

Fixed a bug,

that will never occur again.

Made only a local change, compiler points out use sites.

What does this function do?

foo :: [Bool] -> [Bool]

foo :: [Bool] -> [Bool]

The function can produce every single bit sequence.

foo :: [a] -> [a]

foo :: [a] -> [a]

The function must reuse input.

reverse, empty, cycle, powerset, etc.

foo :: ()

Technically, not a function.

Singleton type 'unit', only one value ().

foo :: a -> a

foo :: a -> a foo a = a

Only one possible implementation.

id

foo :: (a -> b) -> a -> b

foo :: (a -> b) -> a -> b foo f a = f a

Function application, (\$) (specialization of id)

foo :: (b -> c) -> (a -> b) -> a -> c

foo :: (b -> c) -> (a -> b) -> a -> c foo f g a = f (g a)

Function composition, (.)

foo :: (a, b) -> (b, a)

foo :: (a, b) -> (b, a) foo (a, b) = (b, a)

Only one possible implementation.

swap

reverse :: [a] -> [b]

This is a lie!

Can only produce the empty list.

Maybe this?

foo :: a foo = foo Maybe this?

undefined :: a

Also called bottom, or \bot

foo :: a -> b

foo :: a -> b

Dangerous coercion!

Provided by the compiler as unsafeCoerce.

Theorems for free

Curry-Howard isomorphism:

Types ⇔ Propositions

Implemention \Leftrightarrow Proofs

Genericity

Equality

equalInt :: Int -> Int -> Bool

equalInt :: Int -> Int -> Bool

equalStr :: String -> String -> Bool

equalBool :: Bool -> Bool -> Bool

equalX :: X -> X -> Bool

Generic Equality

(==) :: a -> a -> Bool

Nope

(==) :: a -> a -> Bool

Free theorems say cannot be done!

Do all types have equality anyway?

Constraint

(==) :: Eq a => a -> a -> Bool

Type classes

class Eq a where (==) :: a -> a -> Bool

Type classes

instance Eq Bool where
True == True = True
False == False = True
= False

Composability

notEq :: Eq a => a -> a -> Bool
notEq a b = not (a == b)

Composability

lsEq :: Eq a => [a] -> [a] -> Bool
lsEq [] [] = True
lsEq (x:xs) (y:ys) = x == y && lsEq xs ys
lsEq _ _ _ = False

Super classes

instance Eq a => Eq [a] where (==) = lsEq

ghci> [[], [True, False]] == [[True]]

False

Type classes

Eq, Ord, Show, Read, Random, Bounded, Enum, IsString, Functor, Num, Floating, Fractional, Json, Xml, Binary, ...

Lots more

Deriving

data User = User { name :: String , contact :: Either Twitter Email , age :: Int } deriving (Eq, Ord, Show)

Either, Sum or +

data Eihter a b = Left a | Right b

Tuple, Product or *

data Tuple a b = Tuple a b

Tuple, Product or *

$$data(,) a b = (,) a b$$

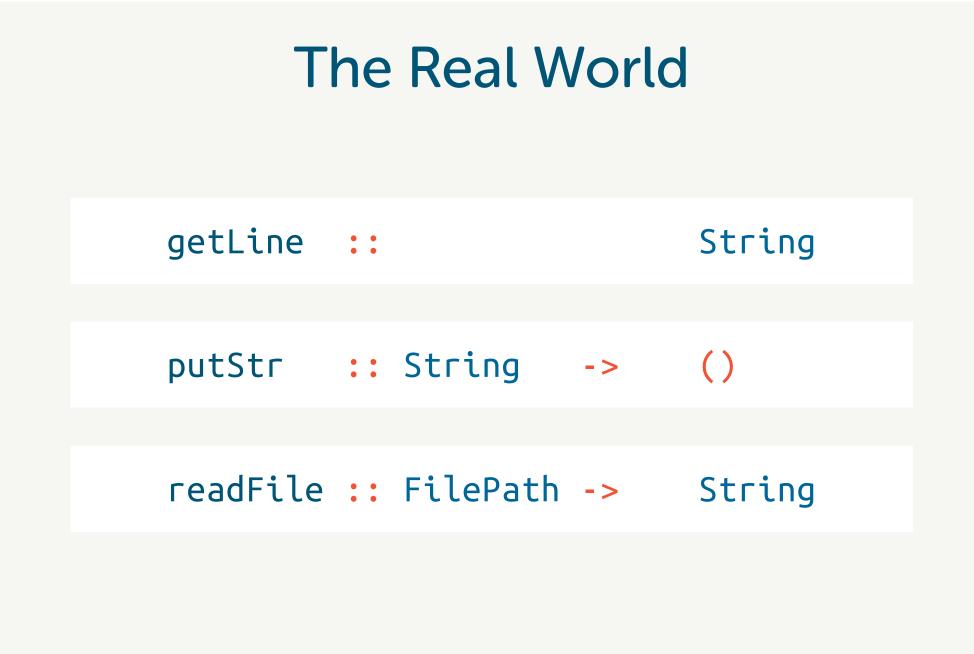
data (a, b) = (a, b)

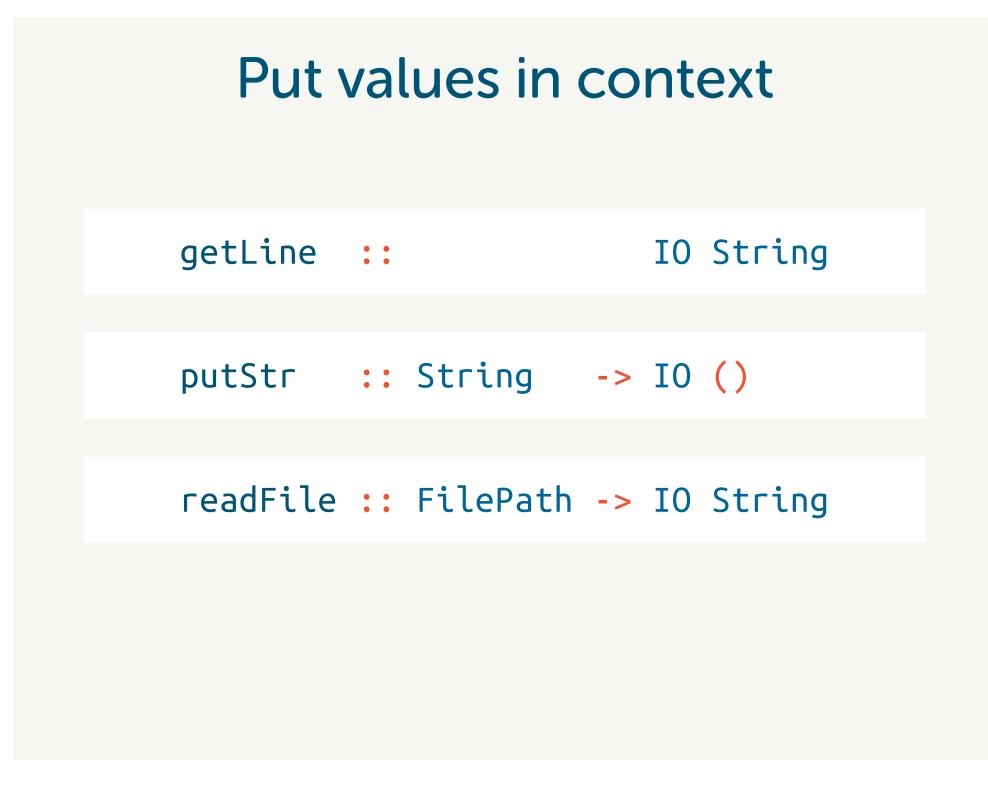
Deriving Generics

data User = User

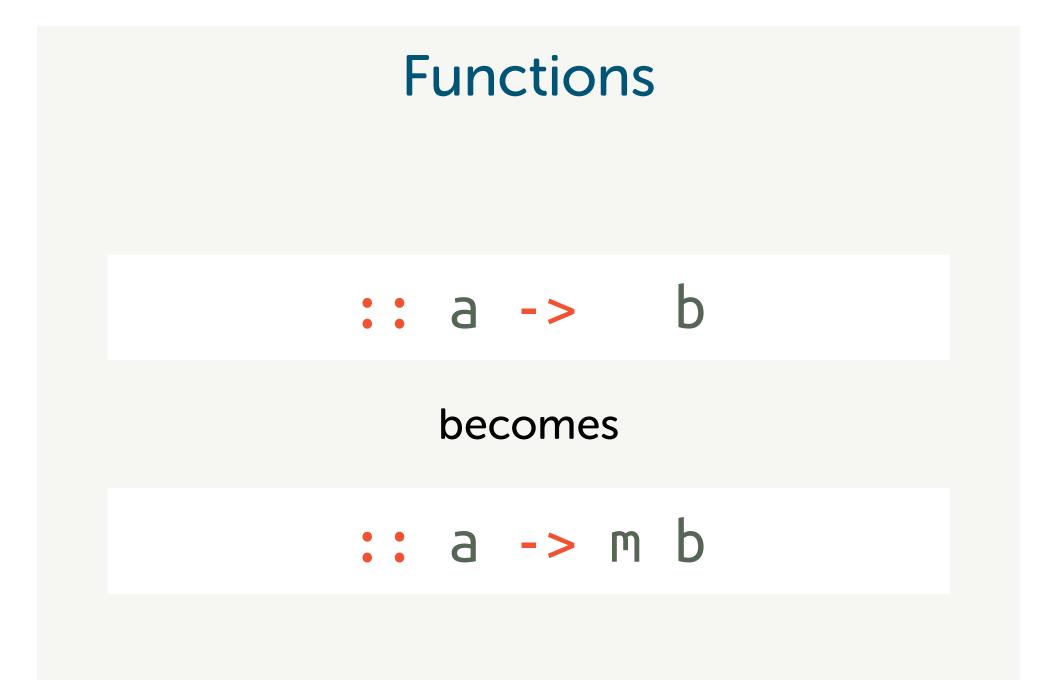
- { name :: String
- , contact :: Either Twitter Email
- , age :: Int

deriving (Eq, Ord, Show, Generics)


Deriving Generics


Represents datatype algebraicly, using sums and products.

Now we can derive Json, Xml, Binary, etc.


5.

Effects

Effects

IO, ST, Cont, Identity, Maybe, Either, [], State, Reader, Writer, Random, Parser, Async, Par, STM, ...

Lots more

Running

runState :: State v a -> v -> (a, v)

Most effects can be run

runState :: State v a -> v -> (a, v)

runReader :: Reader v a -> v -> (a)

runWriter :: Writer v a -> (a, v)

What about IO?

runIO :: IO a -> a

unsafePerformIO

runIO :: IO a -> a

Effects escape into purity!

main :: IO ()

The RTS interprets your top level **10**.

Composability

Parse to a list of values or failures from a socket in parallel?

ParT . ParserT . ListT . EitherT Err . IO

Idioms

Category, Arrow, Functor, Applicative, Alternative, Monad, MonadPlus, Foldable, Traversable, ... class Functor f where
 fmap :: (a -> b) -> f a -> f b

lengths :: Tree String -> Tree Int lengths = fmap length

class Applicative f where
 pure :: a -> f a
 (<*>) :: f (a -> b) -> f a -> f b

mkUser :: String -> Int -> User

pStr :: Parser String
pInt :: Parser Int

pUser :: Parser User
pUser = pure mkUser <*> pStr <*> pInt

class Foldable f where
fold :: (a -> a -> a) -> f a -> a

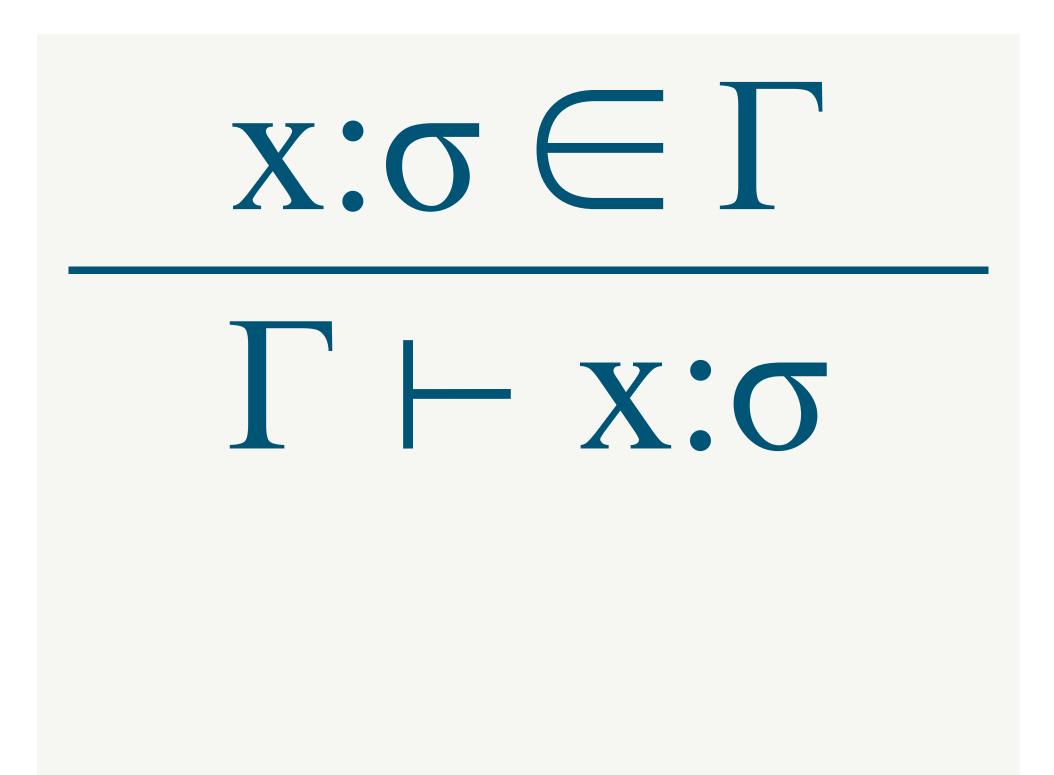
minTree :: Tree Int -> Int minTree = fold min

class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

getLine :: IO String
print :: String -> IO ()

echo :: IO ()
echo = getLine >>= print

echo :: IO () echo = do ln <- getLine print ln</pre>


class Functor f => Traversable f where mapM :: Monad m => (a -> m b) -> f a -> m (f b)

fetch :: [Request] -> ParT IO [Response] fetch = mapM Http.request

fetch :: [Request] -> ParT IO [Response]
fetch = mapM Http.request

type Matrix a = Vector (Vector a)

transpose :: Matrix a -> Matrix a
transpose = mapM id

silkapp.com @silkapp github.com/silkapp

fvisser.nl @sfvisser

github.com/sebastiaanvisser